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Abstract. Weyl’s rule of association is applied to the multinomial basis set for classical 
phase space functions and, using an appropriate symplectic notation, the corresponding 
basis set in quantum-mechanical phase space is found to consist of averages of multinomial 
operators. Groenewold’s rule for the Wigner equivalent of a product of two operators is 
generalised to an arbitrary number of multipliers. An explicit expansion is derived for 
general multinomial operators in terms of symmetric multinomials (i.e. the basis set 
averages) and powers of h. This makes it simple to apply Weyl’s correspondence rule to 
both classical and quantum-mechanical functions with multinomial expansions. 

1. Introduction 

Weyl’s rule of association (Weyl 1931, see also Cohen 1966, 0 2) provides a one-one 
linear correspondence between quantum-mechanical phase space operators and 
classical functions of the position and momentum coordinates. In one dimension, it 
is usually expressed as a mapping between the basis sets C:= ( e ( O q + ~ p ) }  and Q:= 
{ e ( @ +  T$), where e(x) := eix and 8, T range over the real numbers. 

Although Weyl was postulating only a one-way mapping C + Q, his rule is in fact 
one-one (Imre et a1 1967, 0 11). It is given by 

e ( O q + 7 p ) - e ( @ + 7 $ ) .  (1.1) 

The classical phase space function induced by Weyl’s rule from the operator function 
A is denoted by either (A)w or A,. Thus, if A w ( q , p )  has a Fourier transform .(e, 7) 

such that 

Aw(q,P) = J ..(e, T ) e ( w +  d e  d7, 

then equation (1 .1)  implies that 

?se of the subscript ‘ W  is politic; Aw may be referrzd to as the ‘Weyl transform’ 
of A (e.g. Leaf 1968) or as the ‘Wigner equivalent’ of A (e.g. Imre et a1 1967). The 
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latter term emphasises the close link between Weyl's rule and the Wigner phase space 
distribution func!ion W(q, p ,  t )  (Wigner 1932) which is such that the expectation value 
of the operator A is given by 

(4 = J- Aw(4, P)  W q ,  P, t )  dq dP. 

This paper intends to illuminate Weyl's rule and make it more easily applicable in 
many cases, by examining the correspondence in relation to the basis set of multinomials 
in classical phase space. In one dimension this is the set C':= {q"p"} where m, n are 
non-negative integers. McCoy (1932) showed that the rule of association in this case 
takes the form 

(1.2a) 

(1.26) 

His proof was complicated; a simpler method was outlined by Mukunda (1979, § IV) 
as follows: in equation ( 1 . 1 )  rewrite e (  O 4 - t  ~ p * )  as e ( i O < ) e ( T $ ) e ( i O i )  (the result given 
in the appendix may be used to show this). The exponential functions are now expanded 
and coefficients of Omrn equated to give result (1.2a). Equation (1.26) may be obtained 
in a similar manner. 

Both forms of Weyl's rule, ( 1.1 ) and ( 1.2) above, are easily applied in the direction 
classical + quantum-mechanical. It is not such a straightforward task, however, to 
proceed the other way: how are general operator functions expressed in terms of either 
of the basis sets Q or Q ' : = { 2 - " ~ ~ ~ 0 ( ~ ) ~ r p * n ~ m ~ r } ?  For Q the result e(O$+Tp^)= 
e(f&h)e(Og^)e(Tp^) is used; if is now expressed in normal form, i.e. the 4 factors 
precede the p* factors, then A, is easily calculated (see Cohen 1966, § 2). 

In the case of Q', it is messy to find the normal form of the general multinomial 
operator . . . $"$",. However, it will be found that significant formal simplicity 
is achieved by combining the position and momentum coordinates into one vector and 
the normal form may be bypassed altogether in determining the Wigner equivalents 
of multinomial operators. This notation is introduced in the next section. 

Wigner equivalents of operator products are studied in the third section and applied 
to phase space multinomials in § 4. Where 0' is generalised to a basis set for phase 
space of arbitrary even dimension, an explicit expansion of multinomials in terms of 
the basis elements is found. Finally, a discussion is given in 0 5 .  

2. Symplectic form of Weyl's rule 

Weyl's rule is easily generalised to N dimensions; in equation ( 1.1 ) replace q, p ,  4, $, 0, T 

by N-vectors and multiplication by the scalar product. A simpler form is obtained, 
however, using symplectic notation (see e.g. Goldstein 1980 and Andrews 1983, § 2). 

Define the phase space vector x by x i  := qi, x ~ + ~  :=pi for i = 1,2 , .  . . , N. The 
operator f is defined in an analogous fashion. The rule of association (1.1) then 
generalises to 

e ( O u x z ) t ,  e(O"x^"), (2.1 ) 
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where 6 is a 2N-vector with components 0" (Greek indices run from 1 to  2 N  and 
repeated indices are to be summed over). 

It is also convenient to define the 2 N  x 2 N  block matrix E by 

where I N  is the N x N identity matrix. The basic commutation relations [& $,] = ih8, 
now take the form 

[i", .PI = ih&OLP, (2.3) 

where 

in the correspondence relation (2.1) and equating the coefficients of 0") . . . 0",1: 

is the ( a ,  ,B) element of E .  

The generalisation of equations (1.2) may be found by expanding the exponentials 

i.e., 

Now O p l . .  . BP-  = 0") . , . 13". if and only if m = n and P I , .  . . , Pn = cyin , .  . . , a,,, where 
i,, . . . , in is any permutation P of 1 , .  . . , n. Hence n ! x " l . .  . xa" -  
Zpia81 . . . i%, or 

(2.4) 

where ( ) are the usual symmetrising brackets. Thus equations (1.2) have an elegant 
generalisation: the operator corresponding to the multinomial x u )  . . . x " ~ ~  is the average 
of all the possible permutations x^"f!  . . . ,?"J.. 

It  can be seen from (2.4) that Weyl's rule may be written as a simple correspondence 
between the basis sets { x " ~  . . , x"n} and {$"I . . . f"~~)}, A method of expressing the 
operator , . in terms of symmetric multinomials remains to be found; this is 
done in 8 4. 

XU' , . I X"" @ ? ' " I  . . . i".' 

3. Wigner equivalents of products 

In general, the operators a, l$ d o  not commute and hence one cannot have (al$),= 
AwBw, since the correspondence is one-one and linear. However, a similar equation 
does hold where the right-hand side is multiplied by a differential operator. This is 
called Groenewold's rule (Groenewold 1946; see Imre et al 1967, § 111) and will be 
shown here to be a special case of a more general rule which gives the Wigner equivalent 
of a general eroduct of operators. 

Suppose A has the form 

a(;, = a](;) . . . A y i ,  
and 

a'(;) = [ a,( 8 ) e (  e"?") d 8  f o r i = l ,  . . . ,  n. 
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Now define a ( @ )  := a , ( @ , )  . . . a,( e,,), where @:= (el,.  . . , e,,) is a 2nN-vector. Then 

A(;)= a ( @ ) e ( O , " P ) .  . . e ( 0 : P )  d@ J 
using the result given in the appendix, where j ,  k range over 1 , .  . . , n. Hence 

A(x) = a ( @ ) e (  -$I C E"PO;Okp)e(P" 8,") d@ 
J < k  

from equation (2.3). 
Weyl's rule in the symplectic form (2.1) may now be applied to give 

or 

(AI . . . A " ) ~ ( X )  = e ifi c E"PaZ/axp ax8 A k ( x , ) .  . . A ; ( r ) }  1 ( J < k  ) xi =.. .=xn =x 

. (3.1) 

The last line is most easily demonstrated by working backwards, expanding the 
exponential operator and using the definition of a(@).  

Equation (3.1) allows one to calculate the Wigner equivalent of a product from 
the Wigner equivalents of the multipliers. Groenewold's rule is obtained by setting 
n = 2 :  

[A(;) i ( i ) l w  = {e(& " p  a2/ax;l ~ x ! ) A ~ ( x ,  ) B ~ ( X J } ~  =x2=x  (3.2a) 

= {A,(x+fifi~.")Bw(Y)}I,,, (3.2b) 

= { B d x  -tihDp)Aw(y)}l,.,, ( 3 . 2 ~ )  

8/dyp (so that 0, = (V, -Vq)) and the equation e ( T *  V , ) f ( x )  = 

The most applicable case of (3.)) is when each A' is a function of one phase space 

where D; := 
f ( x  + iT )  has been used. 

coordinate only , 2 " ~  say. Then [A'(X^"')lw = A'(x"1) and so one obtains 

Hence, if an operator A is expressed as a sum of products of this form, then its Wigner 
equivalent can be found from equation (3.3), bypassing the task of expressing A in 
normal form. 

Finally, reve_fting 10 the usual phase space notation, if A($, p * )  is of the form 
A , ( i ) i l ( @ ) .  . . A,,( i )B, , (p*) ,  then it may be shown from (3.1) that 

P I = P  

(3.4) 
It can be seen that the sympletic notation is more compact and better suited to the 
expression of general forms. 
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4. Phase space multinomials 

The results of the previous section will now be used to find the Wigner equivalent of 
the general multinomial in terms of 
the symmetric multinomials of 9 2 can be easily deduced. 

From equation (3.3), putting A ' ( x )  = x ,  one obtains (where i , j ,  k range over 
1 , .  . . , n) 

. . . i".. From this the expansion of iml . . . 

from the expansion of e ( x ) ,  where one defines 

Now, 

3 3 
. . . - y , . . . y ,  - 

a Y k ,  

yp, . . . where j , ,  . . . , k,  are distinct and 2 m  s n 
= (0 otherwise, 

where the sequence P I , .  . . , Pn-2m is defined by removing j , ,  . . . , k,  from the sequence 
1, . . . , n. 

Hence for m > [in] (where [ i n ]  denotes the integer part o f f n )  T,,,(y) = 0; otherwise, 
adopting the convention that where several variables appear under the one summation 
sign, the sum is to be evaluated over distinct values of these variables only, then one 
can write 

T, (y )  = C EuJIoAl . . . E U ' m % n y p 1  . . . y o r , - 2 m .  
J i<k i  

< k,, 

Noting that each term in the sum is independent of the ordering of the pairs 
(jl, k , ) ,  . . . , (j,, k m ) ,  the result may be written more simply as 

Substitution of this expression into equation (4.1) yields the formula 

ln/zJ 

m = l  j l y k l  

1, k, 
( j ,  <...<jm) 

(P . , . .?'n)w = x u )  . . . xu" + (fib)" C E ~ J ~ ~ ~ ,  . . . E ~ J ~ ~ ~ ~ x P I  . . . x P . - 2 m  (4.2) 
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where p, ,  . . . , pn-?, now denotes the sequence aI,. . . , a, with the terms ai.,, . . . 
removed. 

This gives an  explicit expression for the Wigner equivalent of ;"I . . . 
example, in the case n = 2  one has ( ,f"?P)w=x*xP+$h&ap. In  particular (46 

For 
W =  

= -E@'. Thus either 
q p  + iih while ( $$)w = p q  - +ih. 

equation implies that 
It is possible to obtain equation (2.4) from (4.2) using 

XBI . . . xP?I-2t?I = [;'PI . . . p ! l - ? m ' ] w .  

Substituting this into equation (4.2) and remembering that Weyl's rule is linear and  
one-one, we derive the operator relation 

I,,, < k,, ,  
( J I <  <J,,,) 

It is to be remembered that the j , ,  . . . , k ,  are to be summed over disrinct values 
in the range I , .  . . , n. Hence, for example, 

;".p;Y = ;'";P;Y'+$h(&aP;Y + & U Y j y  + & P Y i " ) .  

The symmetric multinomials are seen to form a complete basis for general multinomials; 
equation (4.3) gives the explicit expansion. 

5. Discussion 

The paper has mainly been concerned with the form Weyl's rule takes as a correspon- 
dence between the multinomial basis sets {xa l  . . . x u " }  and {.?'nl . . . ;",I]}. This extends 
to more general functions as follows. 

If equation (2.1) is multiplied by e ( - O " ( " ) ,  where 5 is some point in phase space, 
then, writing X := x - 6, one obtains e(  O"XU)  e (  O"2"). Thus Weyl's rule is invariant 
under translation, implying that x may be replaced by X in equations (2.4), (4.2) and 
(4.3). Hence, if the classical function A ( x )  has a formal Taylor expansion about 5 of 
the form A ( x )  = ( 1 /  k ! ) u , ,  yhXyi  . . . X y ~ ,  then the corresponding operator induced 
by Weyl's rule is 

5 

A ( i )  = C ( I / k ! ) U Y l  ,,$(Yt . . . 2 2 . h ' .  
k = O  

Similarly, if going in the reverse direction an  operator has the multinomial 
expansion 

cs A(;) = C ( l / k ! ) b y l  y,2y~ . . . g y h ,  (5.1) 

then equation (4.2) with X substituted for x may be used to find A,(x) as power series 
in h. Note that, while for a smooth function the uy l  yi coefficients are symmetric (i.e., 
aAYI y4 - - a , , ,  y r i ) ,  this is not in general the case for the bYl ,,. For example, take 
A( 4, $) = 

I f  A ( x )  is a truly classical function in the sense that it is independent of h, then the 
operator a related to A by (A),= A could be said to be symmetrical. Three equivalent 

k = O  

and 6 = 0. Then b , ,  = 2 and b2,  = 0. 
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conditions for a to be a symmetrical operator are that: aA,/ah = 0; the generalised 
Taylor series coefficients of equation (5.1) are symmetric, i.e., by, y c  = b,,, rei; and 
finally AJx)  = A,(x), where A , ( x )  is the classical function obtained by replacing 2 
by x in the expression for a(;) and letting h + 0. 

The derivation of the equations in § 3 and § 4 relied essentially on three properties: 
that the components of x satisfy condition ( A I )  of the appendix and that Weyl’s rule 
is both linear and one-one. Equation (4.3) can in fact be proven by algebraic manipula- 
tion of multinomial operators, independent of Weyl’s rule and Wigner equivalents, 
but still relying on condition (AI) .  However, the proof is long (over 15 typewritten 
pages) and complex. 

Correspondence rules of the form e(  6q + ~ p )  ef( 8, .)e( 6; + T$)  have been studied 
by Cohen (1966, 1976) in the context of general phase space distribution functions in 
quantum mechanics. It might be thought that the methods applied in this paper could 
be used to express multinomial operators in terms of basis functions other than 
symmetric multinomials. I have found, however, that the presence o f f (  8, 7)  makes 
this impracticable. 

It could seem that re-expressing results derived in the symplectic notation in terms 
of the usual phase space notation is difficult; this is not the case. If the symmetrised 
operator corresponding to tm$” is to be denoted by h,,,,,($, i ) ,  then A,, is given by 
the right-hand sides of equations (1 .2a ,  b ) .  Then in two dimensions for example, if 
some multinomial operator has a total of m ,  ql’s, m2 q , ’ s ,  n ,  pr’s  and n, p , ’ s ,  the 
coymutation reiations ensure that the corresponding symmetric multinomial is given 
by $r)Cl m2n2(i,, 6, ). Also the sums in equations (4.2) and (4.3) are quite easy 
to evaluate since is mostly zero. 
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Appendix 

Here i t  is shown that 
,A, , . , ,A<, = e!  l , . - k  [A, .A. , leA,- . .  +A,, 

where the operators a, satisfy the condition 

[ [A,,  A,], A k ] =  0 V i,j, k, in the range 1, . . . , n. 

general n then follows easily by induction. 

A A  A 

( A I )  

For n = 2 ,  the formula is well known (see e.g. Merzbacher 1970). The result for 

It should be noted that the components of x^ satisfy condition (AI ) .  

Note added in proof: The essential content of equation 12.4) is stated in $ 2.4 of the  review paper  by N L 
Balazs and B K Jennings (1984 Phys. Rep. 104 347). 
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